skip to main content


Search for: All records

Creators/Authors contains: "Dorn, Kevin M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Key message The first cytological characterization of the 2N v S segment in hexaploid wheat; complete de novo assembly and annotation of 2N v S segment; 2N v S frequency is increasing 2N v S and is associated with higher yield. Abstract The Aegilops ventricosa 2N v S translocation segment has been utilized in breeding disease-resistant wheat crops since the early 1990s. This segment is known to possess several important resistance genes against multiple wheat diseases including root knot nematode, stripe rust, leaf rust and stem rust. More recently, this segment has been associated with resistance to wheat blast, an emerging and devastating wheat disease in South America and Asia. To date, full characterization of the segment including its size, gene content and its association with grain yield is lacking. Here, we present a complete cytological and physical characterization of this agronomically important translocation in bread wheat. We de novo assembled the 2N v S segment in two wheat varieties, ‘Jagger’ and ‘CDC Stanley,’ and delineated the segment to be approximately 33 Mb. A total of 535 high-confidence genes were annotated within the 2N v S region, with > 10% belonging to the nucleotide-binding leucine-rich repeat (NLR) gene families. Identification of groups of NLR genes that are potentially N genome-specific and expressed in specific tissues can fast-track testing of candidate genes playing roles in various disease resistances. We also show the increasing frequency of 2N v S among spring and winter wheat breeding programs over two and a half decades, and the positive impact of 2N v S on wheat grain yield based on historical datasets. The significance of the 2N v S segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement. 
    more » « less
  2. PREMISE

    Nucleic acid integrity can be compromised under many abiotic stresses. To date, however, few studies have considered whether nucleic acid damage and damage repair play a role in cold‐stress adaptation. A further insufficiently explored question concerns how age affects cold stress adaptation among mature perennials. As a plant ages, the optimal trade‐off between growth and stress tolerance may shift.

    METHODS

    Oxidative damage to RNA and expression of genes involved in DNA repair were compared in multiple mature cohorts ofThinopyrum intermedium(an emerging perennial cereal) and in wheat and barley under intermittent freezing stress and under nonfreezing conditions. Activity of glutathione peroxidase (GPX) and four other antioxidative enzymes was also measured under these conditions. DNA repair genes included photolyases involved in repairing ultraviolet‐induced damage and two genes involved in repairing oxidatively induced damage (ERCC1, RAD23).

    RESULTS

    Freezing stress was accompanied by large increases in photolyase expression andERCC1expression (in wheat andThinopyrum) and in GPX and GR activity (particularly inThinopyrum). This is the first report of DNA photolyases being overexpressed under freezing stress. OlderThinopyrumhad lower photolyase expression and less freezing‐induced overexpression ofERCC1. YoungerThinopyrumplants sustained more oxidative damage to RNA.

    CONCLUSIONS

    Overexpression of DNA repair genes is an important aspect of cold acclimation. When comparing adult cohorts, aging was associated with changes in the freezing stress response, but not with overall increases or decreases in stress tolerance.

     
    more » « less
  3. PREMISE

    Understanding the relationship between genetic structure and geography provides information about a species’ history and can be used for breeding and conservation goals. The North American prairie is interesting because of its recent origin and subsequent fragmentation.Silphium integrifolium, an iconic perennial American prairie wildflower, is targeted for domestication, having undergone a few generations of improvement. We present the first application of population genetic data in this species to address the following goals: (1) improve breeding by characterizing genetic structure and (2) identify the species geographic origin and potential targets and drivers of selection during range expansion.

    METHODS

    We developed a reference transcriptome as a genotyping reference for samples from throughout the species range. Population genetic analyses were used to describe patterns of genetic variation, and demographic modeling was used to characterize potential processes that shaped variation. Outlier scans for selection and associations with environmental variables were used to identify loci linked to putative targets and drivers of selection.

    RESULTS

    Genetic variation partitioned samples into three geographic clusters. Patterns of variation and demographic modeling suggest that the species origin is in the American Southeast. Breeding program accessions are from the region with lowest observed genetic variation.

    CONCLUSIONS

    This prairie species did not originate within the prairie. Breeding may be improved by including accessions from outside of the germplasm founding region. The geographic structuring and the identified targets and drivers of adaptation can guide collecting efforts toward populations with beneficial agronomic traits.

     
    more » « less